A paralyzed patient equipped with an implanted brain chip has been able to use a robotic arm to reach for and pick up a bottle of coffee, bring it close enough to her face so she could drink from a straw, and then place the bottle back on the table.
The quadriplegic patient was outfitted with an electronic brain implant that can drive a robotic arm to reach and grasp objects (see video). A study published today in the journal Nature shows that people with the brain chips can use the devices to perform complex three-dimensional tasks that could be helpful in daily life. Furthermore, the implanted electrodes can record neuronal signals for as long as five years—longer than had been suspected. In previous studies, patients using brain implants have been able to move a cursor on a screen, but not perform complicated movements with objects in the real world.
The results are the latest announcements from a team led by John Donoghue, a neuroscientist at Brown University. Donoghue and collaborators had reported in 2006 that patients paralyzed by spinal-cord injuries could use brain-machine interfaces to drive the movement of cursors on a screen and do simple open-and-close movements with a robotic hand. Now the researchers have shown that a brain-machine interface can direct more complicated tasks. "Not only can people control a computer cursor, they can control really complex devices like a robotic arm that can carry out the functions that our own arm can do," says Donoghue.
The brain implant is a small array that's four millimeters on each side ("about the size of a baby aspirin," says Donoghue) with 96 hairlike electrodes extending from one side. The device sits on the surface of the brain, and the electrodes penetrate the arm-controlling region of the motor cortex by one millimeter. The implant records the impulses of dozens of neurons. A patient's intent to move generates these impulses, which are then transmitted to a computer that translates the patterns of electrical activity into commands that can control a robotic arm. (...)
Source: technologyreview.comAdded: 21 May 2012