Nanocomposite materials that can endure extreme conditions
Composite materials such as fiberglass, which take on a mix of properties of their constituent compounds, have been around for decades. Now, an MIT materials scientist is taking composites to the nanoscale, where entirely new properties, not found in any of the original compounds, can emerge.
Michael Demkowicz, an assistant professor in MIT's Department of Materials Science and Engineering, is part of a team based at Los Alamos National Laboratory that recently received a federal Energy Frontier Research Centers grant to develop nanocomposite materials that can endure high temperatures, radiation and extreme mechanical loading. The ultimate goal is to use these materials in energy applications including nuclear power, fuel cells, solar energy and carbon sequestration.
"All sectors of energy production need materials that can withstand extreme conditions," says Demkowicz, whose model offers a new approach to designing nanocomposites with desirable traits.
There are many models that can take a proposed material structure and predict how it will behave. However, such trial-and-error approaches still require repeated cycles of manufacture and testing and are "an extremely costly and time-consuming way to come up with a new material," says Demkowicz.
His model tackles what materials scientists call "the inverse problem" -- specifying a desired set of properties and then predicting which structures will deliver them -- and could dramatically speed up the design process.
Source: web.mit.eduAdded: 25 August 2009